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LETTER TO THE EDITOR 

A Potts model with infinitely degenerate ground state 

W Kinzel, W Selke and F Y WuT$ 
Institut fur Festkorperforschung der Kernforschungsanlage Julich, 5 170 Julich, West 
Germany 

Received 27 July 1981 

Abstract. A q-component Potts model with ferromagnetic and antiferromagnetic inter- 
actions in the two respective directions of a square lattice is considered. An argument is 
given showing that an ordered phase can exist in this model, even though the ground state is 
disordered and infinitely degenerate. We use the Migdal-Kadanoff transformation to 
obtain a closed-form expression for its critical point. We also carry out a Monte Carlo 
simulation of the model for q = 3. The specific heat exhibits a broad maximum which does 
not sharpen appreciably as the lattice size is increased. This suggests that the phase 
transition, if it exists, is of an unconventional type. 

The q-component antiferromagnetic Potts model has generally been neglected in the 
past, largely due to the expected absence of a long-range order of the usual type for 
q 3 3. The problem has attracted increasing attention recently, after it was suggested 
(Berker and Kadanoff 1980) that a low-temperature phase of algebraic order may exist 
in such systems. The central problem of interest has been the possible existence of a 
transition and, if it exists, the clarification of its nature, in systems whose ground state is 
infinitely degenerate. For the Potts model with pure antiferromagnetic interactions, 
it now appears that a transition of some sort exists in three dimensions for q = 3 
(Berker and Kadanoff 1980, Banavar et a1 1980). But the situation in dimension d = 2 
is less clear. Particularly for the q = 3 square lattice model a Monte Carlo simulation 
(Grest and Banavar 1981) indicates a continuous transition at a non-zero temperature, 
while the exact result of a decorated model (Wu 1981), the rescaling argument (Berker 
and Kadanoff 1980) and a phenomenological renormalisation group analysis (Schick 
1981) imply otherwise. There is a need of further clarification. 

In this Letter we consider a two-dimensional Potts model with mixed ferromagnetic 
and antiferromagnetic interactions. As in the model with pure antiferromagnetic 
interactions, the model is characterised by an infinitely degenerate ground state. We 
present an argument showing that, although the ground state is disordered, an ordered 
phase can still exist in this model at non-zero temperatures. We then determine its 
critical point in a consistent fashion using the Migdal-Kadanoff bond-moving scheme 
(Kadanoff 1976). To test the validity of the critical point so obtained and to clarify the 
nature of the transition we carry out a Monte Carlo simulation of this model for q = 3. 
Our numerical results support the view that, if a transition exists in this model, it is of an 
unconventional type. 

t Permanent and present address: Department of Physics, Northeastern University, Boston, Massachusetts 
02115, USA. 
$Work supported in part by the National Science Foundation grant No DMR 78-18808. 
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We consider a Potts model on a square lattice of M columns and N rows. The 
Hamiltonian 92' is given by 

where the summations are over the M and N nearest neighbours in the two respective 
directions. Here ri = 1,2,  . . . , q specifies the spin state at the ith site, i = 1,2 ,  . . . , MN. 
We shall consider the case of ferromagnetic K, > 0 and antiferromagnetic Ky < 0. 

The ground state degeneracy of this system is q(q - l)N-l which becomes infinite in 
the thermodynamic limit. However, the ground state entropy is not extensive, a feature 
shared by many other systems with widely varied critical behaviours. Examples are the 
KDP model of aferroelectric (Lieb and Wu 1972) which does not exhibit a transition, the 
hard-square lattice gas with second-neighbour repulsion (Kinzel and Schick 1981) and 
the domino model (Andr6 et a1 1979, Villain et a1 1980) for which a transition exists. 
For the present model we shall argue as in the case of the domino model that an ordered 
phase can exist at non-zero temperatures, even though the ground state is disordered. It 
is therefore not unreasonable that a transition exists in this system. 

Consider first the case of infinite ferromagnetic interaction K, = CO. In this limit the 
system consists of chains in the x direction that are ferromagnetically aligned. The 
system is then essentially one-dimensional (in the y direction) with an effective coupling 
MK, between neighbouring chains. 

Such a one-dimensional system is easily solved using the transfer matrix. The 
transfer matrix has the eigenvalues A = eMKs + q - 1, A 2  = A 3  = - - = A, = e M K y  - 1, and 
as usual, the correlation length 6 is given in terms of the eigenvalues as 

It is clear that for M finite ( N  -* CO) and K y  C 0, the zero-temperature correlation length 
remains finite for q > 2, 

(-'(T = 0 )  = In(q - I). (3) 

This indicates that the system is disordered at zero temperature. (Notice, however, that 
(( T = 0) diverges if Ky > 0.) 

Consider next the case of K, # CO. Since the ferromagnetic interactions dominate at 
low temperatures, to a first approximation we may regard the system as composed of 
ferromagnetic chains interacting with some effective interactions. This effective inter- 
action can be evaluated as in the consideration of the domino model (Villain eta1 1980). 
Consider three neighbouring x-chains labelled A, B and C respectively. The effective 
interaction between chains A and C is given by summing the Boltzmann weights over all 
states of chain B. We restrict ourselves to ferromagnetic configurations in chains A and 
C. This now defines an effective interaction MKI between the chains A and C given by 

exp(MKb) = Z M ( ~ , ~ ) / Z M O ,  2) (4) 
where ZM(U, b )  is the partition sum of chain B (of length M )  with fixed configurations 
(a, a,. . . , a )  and (b, b, . . . , b )  in chains A and C respectively. 

The partition sum ZM(U, 6 )  is again most conveniently carried out using the transfer 
matrix. After some straightforward algebra the result yields, in the limit of M+co, 

( 5 )  exp(Kb) = (U + UU* + q - 2 +&)/(U + U Z I  + q - 3 + + J F )  
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where 
E = U ' (1 - ~7 ')' + 2 (4 - 2 )  ( 1 - U ') U + (4 - 2)' + 4 (q  - 1) U ', 
F = ~ ' (1 -  ~ ) ' + 2 ( 1  - ~ ) ( q  -3 - U ) U  +(q  -3)'+(6q - 1 0 ) ~  + U ' ,  

U = eKx, 

(6) 
v = eKy, 

For T + 0 and q # 2 this reduces to 

KL = e-4 + higher-order terms. (7) 
Thus the effective coupling KL is zero at T=O and is ferromagnetic at higher 
temperatures. Therefore, as in the case of the domino model, it is possible to have an 
ordered phase at T # 0. This order is characterised by ferromagnetic correlation 
between x-chains separated by an even number of lattice spacings in the y (antifer- 
romagnetic) direction. 

Assuming the existence of a transition in the present model, we now show that the 
Migdal-Kadanoff transformation (Kadanoff 1976) can be used in a consistent fashion to 
determine its critical point. 

The Migdal-Kadanoff transformation consists of a sequence-of bond-moving and 
site-decimation processes. We first move sequences of n neighbouring horizontal 
bonds to form new ones of strength K:, This is followed immediately by a decimation 
of the sites now without horizontal interactions, leading to new vertical interactions K7f. 
An example of this scheme for n = 2 is shown in figure 1. 

la)  ( b )  ( c )  

Figure 1. The Migdal-Kadanoff transformation. ( a )  The original lattice. ( b )  Sequences of 
n = 2 horizontal bands are moved. ( c )  Sites with no horizontal interactions are decimated. 

It is clear that 

K: = ( n  + l)Kx > 0 

t ( K ? )  = [ f (Ky) ln+l  

t ( ~ )  = 1 +4/(eK - I). 

and also we have after the site decimation (see e.g. Kinzel and Domany 1981) 

where 

It follows that, for q >0, we have K? > 0 provided that we take n =odd. Now for 
ferromagnetic K$ > 0 and K: > 0 the critical point of the Potts model is (see e.g. Wu 
1981) 

(11) exp(K: ) = t ( ~ 7 f  ). 
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Upon using (8) and (9), (11) leads to the following critical condition for the original 
lattice: 

(12) 

The validity of (12) can be verified in one special case. For q = 2 the critical point of 
the model is known; it is readily verified that for q = 2 (12) agrees with the exact result 
eKx = t(-K,). The relation (12) is also self-consistent in the sense that, if one chooses 
n = even in the Migdal-Kadanoff scheme so as to arrive at K: > 0 and K: < 0, (12) is 
also satisfied by these new couplings. Note that this invariance property is not expected 
a priori, as it breaks down if one attempts to generalise the consideration to models with 
pure antiferromagnetic interactions. 

We next carry out a Monte Carlo simulation of the model (1) for q = 3. It has been 
recently shown by Ostlund (1981) that the present model for q = 3 and K, = -Ky is a 
special case of the three-state asymmetric clock model, and on the basis of the 
free-fermion approximation of Villain and Bak (1981), Ostlund (1981) has reached the 
conclusion that an XY-type transition occurs in this model at a non-zero temperature. 
It will therefore be very illuminating to examine our model numerically. 

We used the standard Monte Carlo technique (Binder 1979), computing the energy 
and the specific heat for systems of sizes N X N with periodic boundary conditions, 
where N ranges from 4 to 40. Averages were taken over a few thousand Monte Carlo 
steps per site (MCS/S) for the large systems and about lo4  MCS/S for N = 4.t. 

Our main findings are summarised in figure 2 where the specific heat maxima are 
plotted as a function of the ratio -K,/K,. We also plot the critical condition (12) 
determined from the Migdal-Kadanoff transformation for comparison. In our simula- 
tions the locations of the specific heat maxima follow closely (12) for N = 20. However, 

(1 +eK=)(l  -eK,) = q (K, > 0 ,  K y  < 0). 

t 
q -  3 

08 - 

0 4  

1 
0 0 4  0 8  1 2  1 6  

- K y  I & ,  - K y  I & ,  

Figure 2. Critical temperature for the q = 3 model. The full curve depicts (12). The error 
bars show the Monte Carlo results for the location of the maxima in the specific heat as 
systems of sizes 20 x 20. 

I When applied to the ferromagneticsystem K, = Ky > 0, our procedure leads to data in agreement with those 
of Binder (1981). 
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a study of the size dependence for the system (Kx, K,) - (1, -1) shows that the specific 
heat maximum moves to lower temperatures for larger systems, leading to a distinct 
deviation from the critical condition indicated by (12). This size dependence is shown in 
figure 3. More significantly, the specific heat peak sharpens only slightly with a very 
small increase in its height as N is raised appreciably. This behaviour is reminiscent of 
that found in the Kosterlitz-Thouless, XY- type transitions (van Himbergen and 
Chakravarty 1981, Selke 1981), and is in sharp contrast with that of the ferromagnetic 
Potts model. In figure 3 we show also the size dependence for a ferromagnetic model 
with (K,., K,) - (2,0.2072). (These couplings are chosen to correspond to those 
parameters obtained after performing an n = 1 Migdal-Kadanoff transformation on 
(Kx,Ky)- ( l ,  -l).) It is clear that the size dependence in the ferromagnetic model 
indicates a strong divergence in the specific heat, which is absent in the model (1). 

0 5  07 0 9  11 1.3 
’ I IK, 

Figure 3. Temperature and size dependences of the specific heat, C (in units of the universal 
gas constant), for the model (Kx,  K , )  - (1, -1) and the ‘corresponding’ ferromagnetic model 
with (Kx,  K,) - (2,0.2072). T, denotes the exact transition temperature of the latter case in 
the thermodynamic limit. 

We interpret the Monte Carlo findings as suggesting that the transition, if it exists, is 
of an unconventional type. Note that the specific heat maximum is located at a 
temperature somewhat lower than that given by (12). However, it is not entirely certain 
that the maximum should be identified as the transition point. In the case of the F 
model of an antiferroelectric which exhibits an unconventional type infinite-order 
transition (Lieb 1967), it is known that the specific heat does not diverge and that, as 
found in the present case, the specific heat maximum occurs at a temperature lower than 
the exact critical point (Lieb and Wu 1972). Therefore our numerical data do not 
necessarily rule out the possibility that (12) may very well be exact. 



L404 Letter to the Editor 

Further work on this model, including an application to a mocked axial next- 
nearest-neighbour model, is in progress and will be reported in the future. 
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